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The Crystal Structure of Leifite, Nag[Si;sAl(BeOH),03}.1-5H,0
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The crystal structure of leifite, Nag[Si;sAl.(BeOH),0s4]. 1:5H.0, has been determined by X-ray methods
from three-circle manual diffractometer data. Leifite crystallizes in the space group P3ml with cell
constants a=14-352 (2) and ¢=4-852 (3) A. The structure has been solved by direct methods and has
been refined by full-matrix least-squares methods to an R value of 0-049. The crystal structure of leifite
closely approaches the rank of a tetrahedral framework with a ratio of 20/41 between the number of the
tetrahedral cations and that of the anions. The only vertex which breaks the three-dimensional linking of
tetrahedra belongs to a beryllium tetrahedron and is an equipoint for diadochic (OH) and (F). The three-
dimensional linkage of tetrahedra gives rise to several chains and rings.

Introduction

Leifite is essentially an aluminum, beryllium and so-
dium silicate, bearing water, hydroxyl groups and
fluorine. It is closely associated with feldspar in
the type locality of Narssarsuk, Greenland. Leifite
was first described by Beggild (1915) who reported the
chemical formula quoted by Strunz (1970). Recently
the whole problem of leifite has been reinvestigated by
Micheelsen & Petersen (1970) who pointed out the
presence of beryllium in the chemical composition.
Their revised formula is given in Table 1. These authors
state that the small amount of leifite available did not
allow a total wet chemical analysis; the formula was
built up by microchemical and instrumental techniques.

Experimental

The crystal used for data collection was an irregular
hexagonal prism, 0-29 mm long, with maximum and
minimum thicknesses of 0:125x0:083 mm; it was
mounted parallel to the elongation (¢) axis. The cell
dimensions and the intensities were obtained with a
GEC X-RD6 manual diffractometer, equipped with
pulse-height selector and scintillator counter. Ni-fil-
tered Cu K« radiation was used for the determination
of the unit-cell constants and Zr-filtered Mo Ka radia-
tion for the determination of the intensities. To con-
firm the cell dimensions (Table 1), the extrapolation
function 4[(cos? §/sin 8)+(cos® 6/0)] for the 400 and
00/ reflexions was used.

The intensity data were collected by the «-26 scan-
ning technique with a scanning rate of 2° min~! and
integration range between 1-2 and 2° according to the
peak width; an attenuation filter was inserted in front
of the counter window when required (> 10000 counts
sec™?). One standard reflexion was measured twice a
day; its intensity was constant within 3 %; 439 unique

reflexions were measured (O, x, <25°), of which 99
were considered to be unobservable. A standard devia-
tion was assigned to each of the remaining 340 reflex-
ions, on the basis of the following formula: ¢(/)=
[/+(B,+ B,)B,/B;]""*, where B, and B, are the two
backgrounds at the integration extremes, with B, > B,.
The B,/B, term is an empirical factor, > 1, introduced
to take account of the decrease in reliability of a mea-
sure when the background asymmetry increases.

The space group was determined by the symmetry
and the statistics of the intensities.

No correction for absorption was made because of
the low absorption coefficient of the crystal (Table 1)
and the narrow diffraction range (0 <8 <25°).

The data reduction and all the calculations were
carried out with a UNIVAC 1108 computer via ter-
minal at the Centro di Calcoli numerici of Pavia. Re-
finement on F’s was carried out with a locally mod-
ified ORFLS full-matrix least-squares program (Bu-
sing, Martin & Levy, 1962), which includes the sec-
ondary extinction correction. The atomic scattering
factors used for Si(2), Si(3), O and Be were those listed
by Hanson, Herman, Lea & Skillman (1964); that for
Si(1) was obtained by averaging the values of (2Si+
Al)/3; the scattering curves for Na* and O(8)=
0-6(F~)+0-4(OH") were taken from International
Tables for X-ray Crystallography (1962).

Solution and refinement of the structure

The crystal structure was solved by application of
Sayre’s equation, and also by taking into account the
Patterson synthesis. The more consistent of the seven
sign sets led to the correct solution but not in a straight-
forward way: several spurious peaks appeared in the
first Fourier synthesis and the relative heights of the
right peaks were far from the correct ratios; the beryl-
lium atom, for instance, was represented by the most



A. CODA, L. UNGARETTI

prominent peak. The very approximate starting image
of the structure was improved by a trial-and-error
process.

During the refinement the conventional R index
dropped from the starting value of 0-60 to the final
0-049. The anisotropic thermal factors were included
in the refinement after the residual was reduced to
0-065; the secondary extinction was negligible, i.e. no
extinction factor was taken into account. No attempt
was made to locate the hydrogen atoms.

AND A. DELLA GIUSTA 397

The shifts calculated for the parameters in the final
cycle of least-squares refinement were less than one-
tenth of the standard deviation. At the end of the anis-
otropic refinement the fi;-values for O(6) and O(8)
were negative (—0-007 and —0-001 respectively); the
systematic error responsible for this was not detected,
but the general picture of the thermal situation obtained
after the anisotropic refinement was felt to be accept-
able, as the standard deviations dropped remarkably
after the anisotropy was taken into account. The least-

Table 1. Crystal data

Starting formula
F.W.

Crystal system
Space group
Cell constants: a

Trigonal

}\;355:;3(H30)o.gsi16. 1A12.6B62.0Bo.2041.nFo.a(OH)a.«;

P3m1 (No. 164)
14352+ 0-002 A

c 4-852 +0:003
Volume 865-5 A3
Crystal density: (obs) 2-57 gem™3

(calc) 2:59 gcm™3 for Z=1

Linear absorption
coefficient for Mo K«

radiation 873 cm™!
Number of observed
reflexions 439

Statistical distribution
of intensities

Slightly hypercentric

Table 2. Final fractional coordinates and their standard deviations (in parentheses)

Equipoint  Occupancy
Si(1)=(Si, Al) 6(h) 1-00
Si(2) 6(g) 1-00
Si(3) 6(i) 1-00
Be 2d) 1-00
Na 6(i) 1-00
o(1) 6(i) 1-00
0(2) 12()) 1-00
0@3) 12(j) 1-00
04) 3 1-00
O(5) 6(i) 1-00
O(6)=(H;0) 1(a) 1:00
O(7)=(H,0) 1(b) 0-56 (6)
O(8)=(OH,F) 2(d) 1-00

xla y/b z/c

0 0-2163 (2) %

0 0-3441 (2) 0
0-4476 (1) 0-5524 0:3055 (5)

% % 0-3727 (45)
0-7505 (2) 0-2495 0-2038 (7)
0-1003 (3) 0-8997 0-3953 (13)
0-3070 (4) 0-2607 (4) 0-2480 (8)
0-3592 (4) 0-4583 (4) 0-1021 (8)

¥ 1 3
0-3944 (2) 0-6056 0-4836 (11)

0 0 0

0 0 %

% % 0-0409 (16)

Table 3. Anisotropic thermal parameters and their standard deviations (in parentheses)

The form of the anisotropic temperature factor ( x 10*) is exp (—h2Bi; — k2Bas — I2B33— 2hk By, — 2hIB1s — 2kiB,s).
The B., values are the equivalent isotropic temperature factors proposed by Hamilton (1959).

Bll BZZ ﬂ33 ﬂlZ ﬁlS ﬂ)} ch
Si(1) 17 (2) 20 (2) 68 (13) 8 —10 (4) -5 10
Si(2) 17 (2) 20 (2) 95 (13) 9 3 (4) 2 11
Si(3) 15 (2) 15 58 (11) 9 (2) 02 0 0-8
Be 23 (11) 23 113 (107) 12 0 0 13
Na 34-(2) 34 122 (18) 14 3) 123 -12 19
o(1) 46 (5) 46 156 (34) 16 (5  —15(6) 15 2:6
o) 27 (4) 24 (4) 131 (21) 10 (3) 37 (1) 29 (7) 1-5
o(3) 24 (4) 23 (4) 100 (20) 153) =30(7) —35(7 12
0o(4) 30 (6) 30 104 (38) 29 (7) —8(6) 8 12
o(3) 22 (4) 22 58 (27 16 (4) 7(4) -7 10
0(6) 15 (7) 15 0(59) 7 0 0 0-6
o(7) 61 (27) 61 910 (329) 30 0 0 54
0(8) 10 (4) 10 037 5 0 0 0-4
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squares program automatically set the f;;-values for
O(6) and O(8) equal to zero by giving an identical at-
tenuation factor for all the final variations of the f;;’s;
this was done in order to carry out the analysis of the
anisotropic thermal parameters shown in Table 4.
The final fractional atomic coordinates and the anis-
otropic thermal parameters, as well as their standard
deviations, are listed in Tables 2 and 3. Observed and
calculated structure factors are listed in Table 5.

Table 4. Analysis of the anisotropic thermal parameters

Root mean square thermal vibrations (A) along the ellipsoid
axes and angles (<90°) between the crystallographic axes
and the principal axes (U;) of the vibration ellipsoids.

R.m.s. U.«a U,,b U,C

Si(1) 0-08 68 90 25
0-12 39 90 65
0-13 60 0 90
Si(2) 0-10 72 90 21
012 36 90 69
013 60 0 90
Si(3) 0-08 88 88 2
0-10 30 30 88
011 60 60 90
Be 012 90 90 0
013 — — 90
013 — — 90
Na 011 73 73 19
016 60 60 90
019 35 35 71
o) 013 76 76 16
018 60 60 90
022 34 34 74
0Q) 0-07 68 73 41
015 55 17 74
017 43 86 53
0Q3) 006 82 65 36
012 23 38 84
017 68 64 54
0®) 0-01 35 35 70
012 73 73 20
018 60 60 90
o(5) 0-06 56 56 a1
011 49 49 49
014 60 60 90
0(6) 0-00 90 90 0
011 — — 90
011 — — 90
o) 033 90 90 0
022 — — 90
022 — — 90
0o@®) 0-00 90 90 0
0-09 — — 90
0-09 — — 90

Description of the structure

Interatomic distances and angles and their standaid
deviations are listed in Table 6; Fig. 1 shows the atomic
labelling; the sign (") refers to equivalent atoms of
which the z coordinate is quoted.

There are four unique tetrahedrally coordinated cat-
ions in the structure: Be, Si(1), Si(2) and Si(3), all ly-
ing on mirrors or diads. Beryllium was readily iden-
tified on the basis of its electron density in the F, Fou-
rier map and of its multiplicity compared with the for-
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Table 5. Observed and calculated structure factors
(x10)

An asterisk denotes an unobserved reflexion.
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mula contents (it lies on a triad); the other tetrahedral
cations were identified on the basis of their average
distance from the surrounding oxygen atoms: 1-655 A
for Si(1), 1-605 A for Si(2) and 1-617 A for Si(3). There-
fore the equipoints Si(2) and Si(3) were considered as
filled with ‘pure silicon’, and the whole aluminum
present in the structure was recognized to occupy the
equipoint Si(l). The refinement and the balance of the
electrostatic valences were assessed with the hypothesis
of 2 (Si) and % (Al) in the latter position.

The crystal structure of leifite closely approaches,
without reaching, the rank of a tetrahedral framework;
in fact the ratio between the number of tetrahedral
cations and that of the anions is 20/41. Only one ver-
tex breaks the three-dimensional linkage of tetrahedra:
O(8), i.e. an equipoint for diadochic (OH) and (F) that
belongs to a beryllium tetrahedron. This feature is
common to other silicates containing beryllium and
fluorine or hydroxyl groups, for instance leucophanite,
meliphanite and aminoffite (Coda, 1969); beryllium
appears to compete with silicon in its ability to clasp
these anions. The equipoint O(8) was filled with 0-6
(F) and 0-4 (OH) per unit cell. This ratio agrees well
with the chemical analysis.

The three-dimensional linkage of tetrahedra gives
rise to several chains and rings, which may be seen in
Fig. 2. Pyroxene-like chains (i.e. with repeat units of
two tetrahedra), all equivalent by symmetry and inter-
connected, run along the c¢ axis; they are composed
of Si(1) and Si(2), and the unit translation along c,
4-85 A, is related to the existence of these chains.
Moreover, two equivalent and interlinked chains, with
repeat units of three tetrahedra, are composed of the
sequence Si(3)-Si(2)-Si(3), and also run along c.

The rings of tetrahedra are listed at the end of the
paper, for classification purposes. But, first, attention
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is drawn to the six-membered ring composed of Si(1)
tetrahedra only, interlinked by O(l), surrounding the
triad passing across the cell origin. The Fourier den-
sity map displays a maximum corresponding to an
oxygen atom, O(6), on the origin; it can be interpreted
as a water molecule, statistically distributed to fit the
symmetry of the equipoint 3m. The water molecule
O(6) is surrounded by six O(l) atoms and the O(1)-
O(6) distance, 3-14 A, may correspond to a weak hy-
drogen bond. Another maximum O(7), weaker than
the previous one, was found in the same ‘hollow’,
with coordinates (0, 0, %); the refinement of the weight
of O(7), which was thought to be another water mol-
ecule, led to an occupancy factor of 0-56, and O(7) was
interpreted as +(H,0), statistically distributed. The
0(6)-0(7) and O(1)-O(7) distances, with the corre-
sponding angles (Table 6), are consistent with a statis-
tical system of hydrogen bonding.

As regards the silicon—oxygen distances (Cruick-
shank, 1961), a brief discussion is significant only for
the ‘pure’ silicon atoms Si(2) and Si(3). The Si-O dis-
tance corresponding to the biggest Si-O-Si angle is the
shortest for both silicons, as expected:

Si(2)-0(2) 1-59 A Si(2)-O(2)-Si(1) 139°
Si(2)-0(3) 1462 Si(2)-0(3)-Si(3) 132
Si(3)-0(4) 1-61  Si(3)-O(4)-Si(3’) 180
Si(3)-0(3) 1-64  Si(3)-0(3)-Si(2) 132

The Si(3)-O(5) distance is naturally excluded from
these considerations because the bridge refers to a
beryllium atom.

The sodium ion, located on a mirror plane, has a
coordination number of 5+ 2 (Fig. 1 and Table 6). The
balance of the electrostatic valences is shown in Table
7; as one might expect, the longest Si—O distances cor-

Table 6. Interatomic distances (A), angles (°) and their standard deviations (in parentheses)

An asterisk denotes atoms equivalent to those labelled by one cell translation along the ¢ axis.

Si(1)-0O(1) 2x) 1-645 (3)
Si(1)-0(2) (2x) 1-664 (5)
mean 1-655
O(1)-0(1") 2:692 (8)
0(1)-0(2) (2x) 2-738 (6)
O(1)-0(2")* (2x) 2:668 (7)
0(2)-0(2)* 2-703 (8)
mean 2:701
Si(2)-0(2) 2x) 1-589 (5)
Si(2)-0(3) 2x) 1-621 (5)
mean 1-605
0(2)-0(2") 2:667 (8)
0(2)-0(3) (2x) 2:642 (7)
0(2)-0(3") (2x) 2-555 (6)
0(3)-0(3") 2:657 (9)
mean 2-620
Si(3)-0(3) 2x) 1-641 (4)
Si(3)-0(4) 1-609 (3)
Si(3)-0(5) 1:579 (6)
mean 1-617
0(3)-0(3"") 2:619 (9)
0(3)-0(4) (2x) 2:638 (4)
0(3)-0(5) (2x) 2:661 (7)
04)-0(5) 2627 (6)
mean 2-641
Be—-—0(5) (B x) 1:610 (9
Be——0(8) 1-610 (3)
0O(5)-0(5) (3x) 2:629 (12)
0O(5)-0(8) (3x) 2:630 (9)
Na—O0(8) 2:398 (6)
Na—O(5)* (2x) 2405 (5)
Na—O0(3) (2x) 2:437 (5)
Na—O0(2") (2x) 2-848 (6)
0(6)-0(7) 2-426 (3)
0(6)-0(1) 3-145 (7)
O(71)-0(1) 2:544 (8)

A C30B-10

0O(2)-Si(1)-0Q2")* 108:7 (0-4)
0(2)-Si(1)-0(1) 2x) 111-7 (0-3)
0(2)-Si(1)-0(19) 2x%) 107:5 (0-3)
O(1)-Si(1)-0(1") 109:8 (0-6)
mean 1095

0(2)-Si(2)-0(2") 114-1 (0-4)
0(3)-Si(2)-0(3") 1101 (0-4)
0(2)-Si(2)-0(3") 2x) 110-8 (0-4)
0(2)-Si(2)-0(3) 2x) 1055 (0-2)
mean 1095

0(3)-Si(3)-0(4) @2x) 108-5 (0-3)
0(3)-Si(3)-0(3"") 1059 (0-3)
0(3)-Si(3)-0(5) 2x) 111-4 (0-4)
O(4)-Si(3)-0(5) 110-9 (0-4)
mean 109-5

O(5)-Be-0O(5") 3 x) 1094 (0-4)
0O(5)-Be-O(8) 3G x) 109:5 (0-4)
Si(1)-0(2)-Si(2) 138-5 (0-3)
Si(1)-0(1)-Si(1%) 1413 (0-4)
Si(2)-0(3)-Si(3) 132-4 (0-4)
Si(3)-0(4)-Si(3')* 180-0

Si(3)-0(5)-Be 1273 (0-5)
O(1)-0(6)-0O(7) 1276 (0-5)
O(1)-O(7)-0(6) 1015 (0-6)
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respond to O(3), with the largest negative charge ex-
cess (2-2). O(1), with a remarkable charge deficiency
(1-84), is involved in the hydrogen-bonding system
with the water molecules O(6) and O(7). O(2) and O(5)
are slightly deficient also, but the former obtains some
residual charge from Na* [Na-O(2) distance =2-85 A]
while the latter has the shortest distance from silicon.

The chemical formula most consistent with the struc-
ture investigation is the following:

Nag[Si,s(SisAl,) (BeX),0s] . 1:5H,0 .

X =(OH,F) in general, and in this case X =(F;.qOH,.,).
A shorter version of the formula is given in the title of
this paper. This formula is consistent with Micheel-
sen & Petersen’s analysis.

From a classificatory point of view, according to
recent suggestions (Zoltai, 1960; Coda, 1969), leifite

THE CRYSTAL STRUCTURE OF LEIFITE

can be considered as a silicate belonging to the type
of three-dimensional non-terminated structures of
tetrahedra, with a Zoltai sharing coefficient ¢=1-975
(¢=2 in frameworks), or with a modified sharing co-
efficient C=3-9 (C=4 in frameworks).

The n-membered loops of tetrahedra (Fig. 2), listed
in order of decreasing frequencies f (which are given
in parentheses), are as follows: n=35, Si(1)-Si(2)-Si(3)-
Si(3)-Si(2), (f=6): n=6, Si(1)-Si(1)-Si(2)-Si(1)-Si(1)-
Si(2), (f=6); n=7, Si(1)-Si(1)-Si(2)-Si(3)-Be-Si(3)-
Si(2), (f=6);n=4, Si(2)-Si(3)-Si(2)-Si(3), (f=3); n=6,
Si(1) x 6, (f=1). No silicate of this type was previously
known; therefore this mineral establishes the struc-
tural family of leifite.

We wish to thank Dr Ole V. Petersen, Mineralogical
Museum, Copenhagen, who made this investigation
possible by providing a fine sample of leifite.

Fig. 1. Projection along [001] of the structure and its surroundings. The tetrahedra around Si(1) and Si(3’) have not been comple-
ted in order to avoid in the projection the false images of two tetrahedra Si(1), Si(2) sharing an edge and of a three-mem-
bered ring Si(3), Si(2), Si(3°). The atom O(2) completing the Si(1) tetrahedron is one c-translation below, while the atom O(4)

completing the Si(3’)-tetrahedron is one c-translation above,

Table 7. Balance of electrostatic valences

O(8)=
0(3) O(4) O(5) O06(F )+04(0H™)
%1
x 1 x2 x 1
x 1 x1
®i %2 %3

Cation Tonic strength O(l) 0(2)
Si(1) 092 %2 x 1
Si(2) 1 x 1
Si(3) 1
Be 0-5
Na 0-2

1-84 1-92

2:2 2 1-9 11
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ADDENDUM

The referee raised some doubt about the validity of
the structure proposed by us because of the angle
Si(3)-0(4)-Si(3")=w of 180°: the correct space group
could also have been P321 or P3ml, allowing O(4) to
shift and the w-angle to approach 140°. Although the
intensity statistics had a slightly hypercentric distribu-
tion and the O(4) atom did not show any splitting in
the Fourier map, we tried to refine the structure in the
space groups P321 and P3ml (w=140°) to obtain ad-

Fig. 2. Picture of the chains running along [001]. Unstippled
tetrahedra refer to Si(1), thickly stippled to Si(2), thinly
stippled to Si(3) and ruled tetrahedra to Be.
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ditional evidence for the centrosymmetric model. At
the end of the refinements the standard deviations had
increased tenfold on average, and the w angle again
became nearly 180°. The form of the O(4) thermal el-
lipsoid is exactly that expected with an angle w=180°,
and confirms that the general picture of the thermal
situation has physical meaning. Moreover, we used the
‘DLS’ program written by Meier & Villiger (1969) to
find the framework with the best bond lengths and
angles in space groups P321 and P3ml, starting from
w=170° and after several least-squares cycles the sym-
metry again became P3ml, with @ nearly equal to
180°. Si-O-Si angles of 180° have been detected in at
least four well refined structures, such as thortveitite
and coesite (Baur, 1971).
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Zinc o-ethoxybenzoate monohydrate, ZnCysH 306 . H,O, is monoclinic witha=9-535(8), 6=11-610(10),
c=8384(9) A, =929 (1)°, Z=2. The space group is determined as Pc after solving the structure from
1761 observed X-ray intensities collected on a diffractometer with Cu K« radiation and balanced filters.
The final R is 7-1 % for the observed reflections. Zn is tetrahedrally coordinated by four oxygen atoms at

1988 (2), 2-076 (9), 2:037 (7) and 2-054 (9) A.

Introduction

Zinc o-ethoxybenzoate monohydrate (ZnC,gH,sOs.
H,O0) is the reaction product formed in ethoxybenzoic

A C 30B - 10*

acid (EBA) dental cement (Brauer, 1965, 1967, 1972).
The same compound can be synthesized from 123 g
of ethoxybenzoic acid dissolved in 20 ml of methanol
and 8:8 g of zinc oxide by heating for 6 h in a steam



